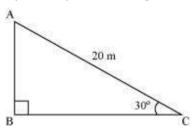
Question 1:

A circus artist is climbing a 20 m long rope, which is tightly stretched and tied from the top of a vertical pole to the ground. Find the height of the pole, if the angle made by the rope with the ground level is 30 °.



Answer:

It can be observed from the figure that AB is the pole.

In ∆ABC,

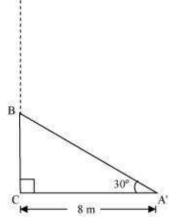
$$\frac{AB}{AC} = \sin 30^{\circ}$$
$$\frac{AB}{20} = \frac{1}{2}$$
$$AB = \frac{20}{2} = 10$$

Therefore, the height of the pole is 10 m.

Question 2:

A tree breaks due to storm and the broken part bends so that the top of the tree touches the ground making an angle 30 $^{\circ}$ with it. The distance between the foot of the tree to the point where the top touches the ground is 8 m. Find the height of the tree.

Answer:



Let AC was the original tree. Due to storm, it was broken into two parts. The broken part A'B is making 30° with the ground.

In $\Delta A' BC$,

$$\frac{BC}{A'C} = \tan 30^{\circ}$$
$$\frac{BC}{8} = \frac{1}{\sqrt{3}}$$
$$BC = \left(\frac{8}{\sqrt{3}}\right)m$$
$$\frac{A'C}{A'B} = \cos 30^{\circ}$$
$$\frac{8}{A'B} = \frac{\sqrt{3}}{2}$$
$$A'B = \left(\frac{16}{\sqrt{3}}\right)m$$

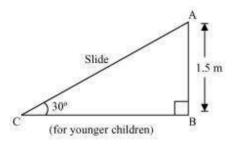
Height of tree = A'B + BC

$$= \left(\frac{16}{\sqrt{3}} + \frac{8}{\sqrt{3}}\right) \mathbf{m} = \frac{24}{\sqrt{3}} \mathbf{m}$$
$$= 8\sqrt{3} \mathbf{m}$$

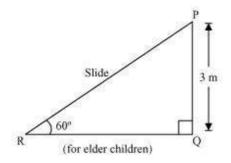
Hence, the height of the tree is $8\sqrt{3}$ m Question 3:

A contractor plans to install two slides for the children to play in a park. For the children below the age of 5 years, she prefers to have a slide whose top is at a height of 1.5 m, and is inclined at an angle of 30 ° to the ground, where as for the elder children she wants to have a steep side at a height of 3 m, and inclined at an angle of 60 ° to the ground. What should be the length of the slide in each case? Answer:

It can be observed that AC and PR are the slides for younger and elder children respectively.



 $\frac{AB}{AC} = \sin 30^{\circ}$ $\frac{1.5}{AC} = \frac{1}{2}$ AC = 3 m



In ΔPQR,

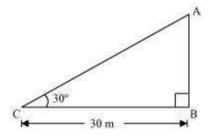
$$\frac{PQ}{PR} = \sin 60$$
$$\frac{3}{PR} = \frac{\sqrt{3}}{2}$$
$$PR = \frac{6}{\sqrt{3}} = 2\sqrt{3} \text{ m}$$

Therefore, the lengths of these slides are 3 m and $2\sqrt{3}$ m

Question 4:

The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30° . Find the height of the tower.

Answer:



Let AB be the tower and the angle of elevation from point C (on ground) is 30° .

In ∆ABC,

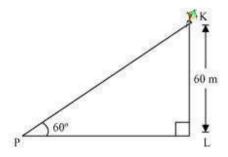
 $\frac{AB}{BC} = \tan 30^{\circ}$ $\frac{AB}{30} = \frac{1}{\sqrt{3}}$ $AB = \frac{30}{\sqrt{3}} = 10\sqrt{3} \text{ m}$

Therefore, the height of the tower is $10\sqrt{3}$ m.

Question 5:

A kite is flying at a height of 60 m above the ground. The string attached to the kite is temporarily tied to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.

Answer:



Let K be the kite and the string is tied to point P on the ground.

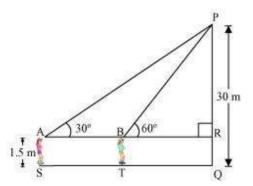
In ∆KLP,

$$\frac{\text{KL}}{\text{KP}} = \sin 60^{\circ}$$
$$\frac{60}{\text{KP}} = \frac{\sqrt{3}}{2}$$
$$\text{KP} = \frac{120}{\sqrt{3}} = 40\sqrt{3} \text{ m}$$

Hence, the length of the string is $40\sqrt{3}$ m.

Question 6:

A 1.5 m tall boy is standing at some distance from a 30 m tall building. The angle of elevation from his eyes to the top of the building increases from 30° to 60° as he walks towards the building. Find the distance he walked towards the building. Answer:



Let the boy was standing at point S initially. He walked towards the building and reached at point T.

It can be observed that

PR = PQ - RQ

$$= (30 - 1.5) \text{ m} = 28.5 \text{ m} = \frac{57}{2} \text{ m}$$

In Δ PAR,
$$\frac{PR}{AR} = \tan 30^{\circ}$$
$$\frac{57}{2AR} = \frac{1}{\sqrt{3}}$$
$$AR = \left(\frac{57}{2}\sqrt{3}\right)\text{m}$$

In ∆PRB,

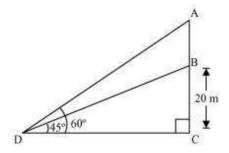
 $\frac{PR}{BR} = \tan 60^{\circ}$ $\frac{57}{2 BR} = \sqrt{3}$ $BR = \frac{57}{2\sqrt{3}} = \left(\frac{19\sqrt{3}}{2}\right) m$ ST = AB $= AR - BR = \left(\frac{57\sqrt{3}}{2} - \frac{19\sqrt{3}}{2}\right) m$ $= \left(\frac{38\sqrt{3}}{2}\right) m = 19\sqrt{3} m$

Hence, he walked $19\sqrt{3}$ m towards the building.

Question 7:

From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.

Answer:



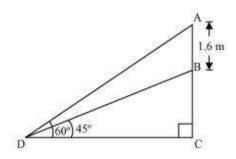
Let BC be the building, AB be the transmission tower, and D be the point on the ground from where the elevation angles are to be measured. In Δ BCD,

 $\frac{BC}{CD} = \tan 45^{\circ}$ $\frac{20}{CD} = 1$ CD = 20 m $In \ \Delta ACD,$ $\frac{AC}{CD} = \tan 60^{\circ}$ $\frac{AB + BC}{CD} = \sqrt{3}$ $\frac{AB + 20}{20} = \sqrt{3}$ $AB = (20\sqrt{3} - 20) \text{ m}$ $= 20(\sqrt{3} - 1) \text{ m}$

Therefore, the height of the transmission tower is $20(\sqrt{3}-1)_{m}$.

Question 8:

A statue, 1.6 m tall, stands on a top of pedestal, from a point on the ground, the angle of elevation of the top of statue is 60° and from the same point the angle of elevation of the top of the pedestal is 45°. Find the height of the pedestal. Answer:



Let AB be the statue, BC be the pedestal, and D be the point on the ground from where the elevation angles are to be measured.

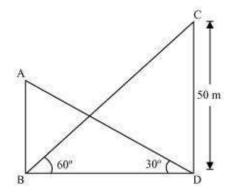
In ∆BCD,

 $\frac{BC}{CD} = \tan 45^{\circ}$ $\frac{BC}{CD} = 1$ BC = CDIn ∆ACD, $\frac{AB + BC}{BC} = \tan 60^{\circ}$ CD $\frac{AB + BC}{BC} = \sqrt{3}$ $1.6 + BC = BC\sqrt{3}$ $BC(\sqrt{3}-1)=1.6$ $BC = \frac{(1.6)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}$ $=\frac{1.6(\sqrt{3}+1)}{(\sqrt{3})^2-(1)^2}$ $=\frac{1.6(\sqrt{3}+1)}{2}=0.8(\sqrt{3}+1)$

Therefore, the height of the pedestal is $0.8^{(\sqrt{3}+1)}$ m.

Question 9:

The angle of elevation of the top of a building from the foot of the tower is 30° and the angle of elevation of the top of the tower from the foot of the building is 60°. If the tower is 50 m high, find the height of the building. Answer:



Let AB be the building and CD be the tower.

In ∆CDB,

 $\frac{\text{CD}}{\text{BD}} = \tan 60^{\circ}$ $\frac{50}{\text{BD}} = \sqrt{3}$ $\text{BD} = \frac{50}{\sqrt{3}}$

In ∆ABD,

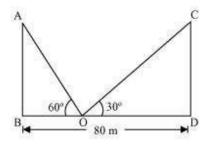
$$\frac{AB}{BD} = \tan 30^{\circ}$$
$$AB = \frac{50}{\sqrt{3}} \times \frac{1}{\sqrt{3}} = \frac{50}{3} = 16\frac{2}{3}$$

Therefore, the height of the building is $16\frac{2}{3}$ m

Question 10:

Two poles of equal heights are standing opposite each other an either side of the road, which is 80 m wide. From a point between them on the road, the angles of elevation of the top of the poles are 60° and 30°, respectively. Find the height of poles and the distance of the point from the poles.

Answer:



Let AB and CD be the poles and O is the point from where the elevation angles are measured.

In $\triangle ABO$, $\frac{AB}{BO} = \tan 60^{\circ}$ $\frac{AB}{BO} = \sqrt{3}$ $BO = \frac{AB}{\sqrt{3}}$ In $\triangle CDO$, $\frac{CD}{DO} = \tan 30^{\circ}$

 $\frac{\text{CD}}{80-\text{BO}} = \frac{1}{\sqrt{3}}$

 $CD\sqrt{3} = 80 - BO$

 $CD\sqrt{3} = 80 - \frac{AB}{\sqrt{3}}$ $CD\sqrt{3} + \frac{AB}{\sqrt{3}} = 80$

Since the poles are of equal heights,

CD = AB

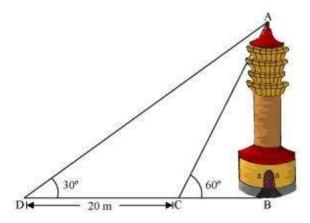
 $CD\left[\sqrt{3} + \frac{1}{\sqrt{3}}\right] = 80$ $CD\left(\frac{3+1}{\sqrt{3}}\right) = 80$ $CD = 20\sqrt{3} m$ $BO = \frac{AB}{\sqrt{3}} = \frac{CD}{\sqrt{3}} = \left(\frac{20\sqrt{3}}{\sqrt{3}}\right)m = 20 m$

DO = BD - BO = (80 - 20) m = 60 m

Therefore, the height of poles is $20\sqrt{3}$ m and the point is 20 m and 60 m far from these poles.

Question 11:

A TV tower stands vertically on a bank of a canal. From a point on the other bank directly opposite the tower the angle of elevation of the top of the tower is 60°. From another point 20 m away from this point on the line joining this point to the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower and the width of the canal.



Answer:

In ∆ABC,

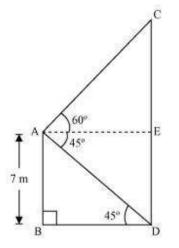
 $\frac{AB}{BC} = \tan 60^{\circ}$ $\frac{AB}{BC} = \sqrt{3}$ $BC = \frac{AB}{\sqrt{3}}$ In ∆ABD, $\frac{AB}{BD} = \tan 30^{\circ}$ $\frac{AB}{BC+CD} = \frac{1}{\sqrt{3}}$ $\frac{AB}{\frac{AB}{\sqrt{3}} + 20} = \frac{1}{\sqrt{3}}$ $\frac{AB\sqrt{3}}{AB+20\sqrt{3}} = \frac{1}{\sqrt{3}}$ $3AB = AB + 20\sqrt{3}$ $2AB = 20\sqrt{3}$ $AB = 10\sqrt{3} m$ BC = $\frac{AB}{\sqrt{3}} = \left(\frac{10\sqrt{3}}{\sqrt{3}}\right)m = 10 m$

Therefore, the height of the tower is $10\sqrt{3}$ m and the width of the canal is 10 m.

Question 12:

From the top of a 7 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 45°. Determine the height of the tower.

Answer:



Let AB be a building and CD be a cable tower.

In ∆ABD,

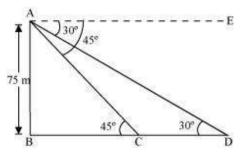
 $\frac{AB}{BD} = \tan 45^{\circ}$ $\frac{7}{BD} = 1$ BD = 7 m $In \ \Delta ACE,$ AC = BD = 7 m $\frac{CE}{AE} = \tan 60^{\circ}$ $\frac{CE}{7} = \sqrt{3}$ $CE = 7\sqrt{3} \text{ m}$ $CD = CE + ED = (7\sqrt{3} + 7) \text{ m}$ $= 7(\sqrt{3} + 1) \text{ m}$

Therefore, the height of the cable tower is $7 \Big(\sqrt{3} + 1 \Big) \ m$

Question 13:

As observed from the top of a 75 m high lighthouse from the sea-level, the angles of depression of two ships are 30° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships.

Answer:



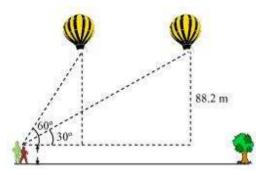
Let AB be the lighthouse and the two ships be at point C and D respectively. In $\Delta ABC,$

```
\frac{AB}{BC} = \tan 45^{\circ}\frac{75}{BC} = 1BC = 75 \text{ m}In \ \Delta ABD,\frac{AB}{BD} = \tan 30^{\circ}\frac{75}{BC + CD} = \frac{1}{\sqrt{3}}\frac{75}{75 + CD} = \frac{1}{\sqrt{3}}75\sqrt{3} = 75 + CD75(\sqrt{3} - 1) \text{ m} = CD
```

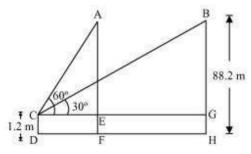
Therefore, the distance between the two ships is $75(\sqrt{3}-1)$ m.

Question 14:

A 1.2 m tall girl spots a balloon moving with the wind in a horizontal line at a height of 88.2 m from the ground. The angle of elevation of the balloon from the eyes of the girl at any instant is 60°. After some time, the angle of elevation reduces to 30°. Find the distance travelled by the balloon during the interval.



Answer:



Let the initial position A of balloon change to B after some time and CD be the girl. In ΔACE ,

$$\frac{AE}{CE} = \tan 60^{\circ}$$
$$\frac{AF - EF}{CE} = \tan 60^{\circ}$$
$$\frac{88.2 - 1.2}{CE} = \sqrt{3}$$
$$\frac{87}{CE} = \sqrt{3}$$
$$CE = \frac{87}{\sqrt{3}} = 29\sqrt{3} \text{ m}$$

In ∆BCG,

 $\frac{BG}{CG} = \tan 30^{\circ}$ $\frac{88.2 - 1.2}{CG} = \frac{1}{\sqrt{3}}$ $87\sqrt{3} m = CG$

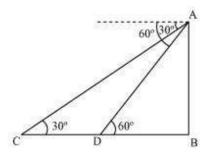
Distance travelled by balloon = EG = CG - CE

$$= \left(87\sqrt{3} - 29\sqrt{3}\right) \mathrm{m}$$
$$= 58\sqrt{3} \mathrm{m}$$

Question 15:

A straight highway leads to the foot of a tower. A man standing at the top of the tower observes a car as an angle of depression of 30°, which is approaching the foot of the tower with a uniform speed. Six seconds later, the angle of depression of the car is found to be 60°. Find the time taken by the car to reach the foot of the tower from this point.

Answer:



Let AB be the tower.

Initial position of the car is C, which changes to D after six seconds.

In ∆ADB,

 $\frac{AB}{DB} = \tan 60^{\circ}$ $\frac{AB}{DB} = \sqrt{3}$ $DB = \frac{AB}{\sqrt{3}}$ In ΔABC, $\frac{AB}{BC} = \tan 30^{\circ}$ $\frac{AB}{BD + DC} = \frac{1}{\sqrt{3}}$ $AB\sqrt{3} = BD + DC$ $AB\sqrt{3} = \frac{AB}{\sqrt{3}} + DC$ $DC = AB\sqrt{3} - \frac{AB}{\sqrt{3}} = AB\left(\sqrt{3} - \frac{1}{\sqrt{3}}\right)$ $=\frac{2AB}{\sqrt{3}}$

Time taken by the car to travel distance DC $\left(i.e., \frac{2AB}{\sqrt{3}}\right)_{= 6 \text{ seconds}}$

Fime taken by the car to travel distance DB
$$\left(i.e., \frac{AB}{\sqrt{3}}\right)^{=} \frac{\frac{6}{2AB}}{\sqrt{3}} \times \frac{AB}{\sqrt{3}}$$

$$=\frac{6}{2}=3$$
 seconds

Question 16:

The angles of elevation of the top of a tower from two points at a distance of 4 m and 9 m. from the base of the tower and in the same straight line with it are complementary. Prove that the height of the tower is 6 m.

Answer:



Let AQ be the tower and R, S are the points 4m, 9m away from the base of the tower respectively.

The angles are complementary. Therefore, if one angle is θ , the other will be 90 – θ . In ΔAQR ,

```
\frac{AQ}{QR} = \tan\theta\frac{AQ}{4} = \tan\theta \qquad \dots (i)
```

In ∆AQS,

$$\frac{AQ}{SQ} = \tan(90 - \theta)$$
$$\frac{AQ}{9} = \cot \theta \qquad \dots (ii)$$

On multiplying equations (i) and (ii), we obtain

)

$$\left(\frac{AQ}{4}\right)\left(\frac{AQ}{9}\right) = (\tan\theta) \cdot (\cot\theta)$$
$$\frac{AQ^2}{36} = 1$$
$$AQ^2 = 36$$
$$AQ = \sqrt{36} = \pm 6$$

However, height cannot be negative.

Therefore, the height of the tower is 6 m.